Package: cbl 0.1.2

cbl: Causal Discovery under a Confounder Blanket

Methods for learning causal relationships among a set of foreground variables X based on signals from a (potentially much larger) set of background variables Z, which are known non-descendants of X. The confounder blanket learner (CBL) uses sparse regression techniques to simultaneously perform many conditional independence tests, with complementary pairs stability selection to guarantee finite sample error control. CBL is sound and complete with respect to a so-called "lazy oracle", and works with both linear and nonlinear systems. For details, see Watson & Silva (2022) <arxiv:2205.05715>.

Authors:David Watson [aut, cre]

cbl_0.1.2.tar.gz
cbl_0.1.2.zip(r-4.5)cbl_0.1.2.zip(r-4.4)cbl_0.1.2.zip(r-4.3)
cbl_0.1.2.tgz(r-4.5-any)cbl_0.1.2.tgz(r-4.4-any)cbl_0.1.2.tgz(r-4.3-any)
cbl_0.1.2.tar.gz(r-4.5-noble)cbl_0.1.2.tar.gz(r-4.4-noble)
cbl_0.1.2.tgz(r-4.4-emscripten)cbl_0.1.2.tgz(r-4.3-emscripten)
cbl.pdf |cbl.html
cbl/json (API)

# Install 'cbl' in R:
install.packages('cbl', repos = c('https://dswatson.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/dswatson/cbl/issues

Datasets:

On CRAN:

Conda:

3.00 score 2 stars 342 downloads 1 exports 17 dependencies

Last updated 2 years agofrom:52eca9d3a1. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 10 2025
R-4.5-winNOTEMar 10 2025
R-4.5-macNOTEMar 10 2025
R-4.5-linuxNOTEMar 10 2025
R-4.4-winNOTEMar 10 2025
R-4.4-macNOTEMar 10 2025
R-4.4-linuxNOTEMar 10 2025
R-4.3-winNOTEMar 10 2025
R-4.3-macNOTEMar 10 2025

Exports:cbl

Dependencies:codetoolsdata.tabledigestdoRNGforeachglmnetiteratorsjsonlitelatticelightgbmMatrixR6RcppRcppEigenrngtoolsshapesurvival