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exclusion_test Testing Exclusion

Description

Performs a Monte Carlo test against the null hypothesis that minimum leakage is zero, a necessary
but insufficient condition for exclusion.

Usage

exclusion_test(
dat,
normalize = TRUE,
method = "mle",
approx = TRUE,
n_sim = 1999L,
parallel = TRUE,
return_stats = FALSE,
...

)

Arguments

dat Input data. Either (a) an n × d data frame or matrix of observations with
columns for treatment, outcome, and candidate instruments; or (b) a d × d
covariance matrix over such variables. Note that in either case, the order of
variables is presumed to be treatment (X), outcome (Y ), leaky instruments (Z).
exclusion_test requires at least two candidate instruments Z.

normalize Scale candidate instruments to unit variance?

method Estimator for the covariance matrix. Options include (a) "mle", the default; (b)
"shrink", an analytic empirical Bayes solution; or (c) "glasso", the graphical
lasso. See details.

approx Use nearest positive definite approximation if the estimated covariance matrix
is singular? See details.

n_sim Number of Monte Carlo replicates.

parallel Run Monte Carlo simulations in parallel? Must register backend beforehand,
e.g. via doParallel.

return_stats Return observed statistic and simulated null distribution?

... Extra arguments to be passed to graphical lasso estimator if method = "glasso".
Note that the regularization parameter rho is required as input, with no default.
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Details

The classic linear instrumental variable (IV) model relies on the exclusion criterion, which states
that instruments Z have no direct effect on the outcome Y , but can only influence it through the
treatment X . This implies a series of tetrad constraints that can be directly tested, given a model for
sampling data from the covariance matrix of the observable variables (Watson et al., 2024).

We assume that data are multivariate normal and impose the null hypothesis by modifying the
estimated covariance matrix to induce a linear dependence between the vectors for Cov(Z,X) and
Cov(Z, Y ). Our test statistic is the determinant of the cross product of these vectors, which equals
zero if and only if the null hypothesis is true. We generate a null distribution by simulating from
the null covariance matrix and compute a p-value by estimating the proportion of statistics that
exceed the observed value. Future releases will provide support for a wider range of data generating
processes.

Numerous methods exist for estimating covariance matrices. exclusion_test provides support for
maximum likelihood estimation (the default), as well as empirical Bayes shrinkage via corpcor::cov.shrink
(Schäfer & Strimmer, 2005) and the graphical lasso via glasso::glasso (Friedman et al., 2007).
These latter methods are preferable in high-dimensional settings where sample covariance matri-
ces may be unstable or singular. Alternatively, users can pass a pre-computed covariance matrix
directly as dat.

Estimated covariance matrices may be singular for some datasets or Monte Carlo samples. Behavior
in this case is determined by the approx argument. If TRUE, the test proceeds with the nearest
positive definite approximation, computed via Higham’s (2002) algorithm (with a warning). If
FALSE, the sampler will attempt to use the singular covariance matrix (also with a warning), but
results may be invalid.

Value

Either a scalar representing the Monte Carlo p-value of the exclusion test (default) or, if return_stats
= TRUE, a named list with three entries: psi, the observed statistic; psi0, a vector of length n_sim
with simulated null statistics; and p_value, the resulting p-value.

References

Watson, D., Penn, J., Gunderson, L., Bravo-Hermsdorff, G., Mastouri, A., and Silva, R. (2024).
Bounding causal effects with leaky instruments. arXiv preprint, 2404.04446.

Spirtes, P. Calculation of entailed rank constraints in partially non-linear and cyclic models. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, 606–615, 2013.

Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the
lasso. Biostatistics, 9:432-441.

Schäfer, J., and Strimmer, K. (2005). A shrinkage approach to large-scale covariance estimation
and implications for functional genomics. Statist. Appl. Genet. Mol. Biol., 4:32.

Higham, N. (2002). Computing the nearest correlation matrix: A problem from finance. IMA J.
Numer. Anal., 22:329–343.

Examples

set.seed(123)
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# Hyperparameters
n <- 200
d_z <- 4
beta <- rep(1, d_z)
theta <- 2
rho <- 0.5

# Simulate correlated residuals
S_eps <- matrix(c(1, rho, rho, 1), ncol = 2)
eps <- matrix(rnorm(n * 2), ncol = 2)
eps <- eps %*% chol(S_eps)

# Simulate observables from the linear IV model
z <- matrix(rnorm(n * d_z), ncol = d_z)
x <- z %*% beta + eps[, 1]
y <- x * theta + eps[, 2]
obs <- cbind(x, y, z)

# Compute p-value of the test
exclusion_test(obs, parallel = FALSE)

leakyIV Bounding Causal Effects with Leaky Instruments

Description

Estimates bounds on average treatment effects in linear IV models under limited violations of the
exclusion criterion.

Usage

leakyIV(
dat,
tau,
p = 2,
normalize = TRUE,
method = "mle",
approx = TRUE,
n_boot = NULL,
bayes = FALSE,
parallel = TRUE,
...

)
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Arguments

dat Input data. Either (a) an n×d data frame or matrix of observations with columns
for treatment, outcome, and candidate instruments; or (b) a d×d covariance ma-
trix over such variables. The latter is incompatible with bootstrapping. Note that
in either case, the order of variables is presumed to be treatment (X), outcome
(Y ), leaky instruments (Z).

tau Either (a) a scalar representing the upper bound on the p-norm of linear weights
on Z in the structural equation for Y ; or (b) a vector representing upper bounds
on the absolute value of each such coefficient. See details.

p Power of the norm for the tau threshold.

normalize Scale candidate instruments to unit variance?

method Estimator for the covariance matrix, if one is not supplied by dat. Options in-
clude (a) "mle", the default; (b) "shrink", an analytic empirical Bayes solution;
or (c) "glasso", the graphical lasso. See details.

approx Use nearest positive definite approximation if the estimated covariance matrix
is singular? See details.

n_boot Optional number of bootstrap replicates.

bayes Use Bayesian bootstrap?

parallel Compute bootstrap estimates in parallel? Must register backend beforehand, e.g.
via doParallel.

... Extra arguments to be passed to graphical lasso estimator if method = "glasso".
Note that the regularization parameter rho is required as input, with no default.

Details

Instrumental variables are defined by three structural assumptions: they must be (A1) relevant, i.e.
associated with the treatment; (A2) unconfounded, i.e. independent of common causes between
treatment and outcome; and (A3) exclusive, i.e. only affect outcomes through the treatment. The
leakyIV algorithm (Watson et al., 2024) relaxes (A3), allowing some information leakage from
IVs Z to outcomes Y in linear systems. While the average treatment effect (ATE) is no longer
identifiable in this setting, sharp bounds can be computed exactly.

We assume the following structural equation for the treatment: X := Zβ + ϵX , where the final
summand is a noise term that correlates with the additive noise in the structural equation for the
outcome: Y := Zγ+Xθ+ ϵY . The ATE is given by the parameter θ. Whereas classical IV models
require each γ coefficient to be zero, we permit some direct signal from Z to Y . Specifically,
leakyIV provides support for two types of information leakage: (a) thresholding the p-norm of
linear weights γ (scalar tau); and (b) thresholding the absolute value of each γ coefficient one by
one (vector tau).

Numerous methods exist for estimating covariance matrices. leakyIV provides support for maxi-
mum likelihood estimation (the default), as well as empirical Bayes shrinkage via corpcor::cov.shrink
(Schäfer & Strimmer, 2005) and the graphical lasso via glasso::glasso (Friedman et al., 2007).
These latter methods are preferable in high-dimensional settings where sample covariance matri-
ces may be unstable or singular. Alternatively, users can pass a pre-computed covariance matrix
directly as dat.
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Estimated covariance matrices may be singular for some datasets or bootstrap samples. Behavior
in this case is determined by the approx argument. If TRUE, leakyIV proceeds with the nearest
positive definite approximation, computed via Higham’s (2002) algorithm (with a warning). If
FALSE, bounds are NA (also with a warning).

Uncertainty can be evaluated in leaky IV models using the bootstrap, provided that covariances
are estimated internally and not passed directly. Bootstrapping provides a nonparametric sampling
distribution for min/max values of the ATE. Set bayes = TRUE to replace the classical bootstrap with
a Bayesian bootstrap for approximate posterior inference (Rubin, 1981).

Value

A data frame with columns for ATE_lo and ATE_hi, representing lower and upper bounds of the
partial identification interval for the causal effect of X on Y . When bootstrapping, the output data
frame contains n_boot rows, one for each bootstrap replicate.

References

Watson, D., Penn, J., Gunderson, L., Bravo-Hermsdorff, G., Mastouri, A., and Silva, R. (2024).
Bounding causal effects with leaky instruments. arXiv preprint, 2404.04446.

Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the
lasso. Biostatistics, 9:432-441.

Schäfer, J., and Strimmer, K. (2005). A shrinkage approach to large-scale covariance estimation
and implications for functional genomics. Statist. Appl. Genet. Mol. Biol., 4:32.

Higham, N. (2002). Computing the nearest correlation matrix: A problem from finance. IMA J.
Numer. Anal., 22:329–343.

Rubin, D.R. (1981). The Bayesian bootstrap. Ann. Statist., 9(1): 130-134.

Examples

set.seed(123)

# Hyperparameters
n <- 200
d_z <- 4
beta <- rep(1, d_z)
gamma <- rep(0.1, d_z)
theta <- 2
rho <- 0.5

# Simulate correlated residuals
S_eps <- matrix(c(1, rho, rho, 1), ncol = 2)
eps <- matrix(rnorm(n * 2), ncol = 2)
eps <- eps %*% chol(S_eps)

# Simulate observables from a leaky IV model
z <- matrix(rnorm(n * d_z), ncol = d_z)
x <- z %*% beta + eps[, 1]
y <- z %*% gamma + x * theta + eps[, 2]
obs <- cbind(x, y, z)
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# Run the algorithm
leakyIV(obs, tau = 1)

# With bootstrapping
leakyIV(obs, tau = 1, n_boot = 10)

# With covariance matrix input
S <- cov(obs)
leakyIV(S, tau = 1)
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